Where Machine and Detector Meet

APS/DPF Joint April Meeting
April 5th, 2003
Philadelphia

Eric Torrence
University of Oregon

Special thanks to Tom Markiewicz

http://physics.uoregon.edu/~torrence/talks/
High Luminosity

- Stability
- Instrumentation
- Crossing angle (NLC/JLC)

Background Protection

- Collimation
- Shielding from collision products
- Extraction to dump

Collision Properties

- Polarization
- Beam Energy
- Luminosity

Large overlap between traditional detector, accelerator, and analysis camps...
• Short focal length ($L^* \sim 3-5$ m)
• Large conical mask (~ 50 mRad)
• Integrated instrumentation
Beams strongly attracted to each other!

<table>
<thead>
<tr>
<th></th>
<th>Tesla 500</th>
<th>NLC/JLC 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2.0×10^{10}</td>
<td>0.75×10^{10}</td>
</tr>
<tr>
<td>σ_x</td>
<td>550 nm</td>
<td>250 nm</td>
</tr>
<tr>
<td>σ_y</td>
<td>5 nm</td>
<td>3 nm</td>
</tr>
<tr>
<td>σ_z</td>
<td>300 μm</td>
<td>110 μm</td>
</tr>
</tbody>
</table>

⇒ Beams strongly attracted to each other!

- Spot size reduced \((\text{higher lumi} \sim x2)\)
- Outgoing beam highly disrupted
- Pinch produces ‘beamstrahlung’ photons
Beamstrahlung Photons

- $N_\gamma/N_e \sim 1.5$
- $E_\gamma/E_{beam} \sim$ few percent
- confined to 1 mRad cone
- secondary e^+e^- pairs

Charged Particles

- Long E tail after IP
- Radiative Bhabhas
- Beam-beam pairs

77 kW $E < 50\% E_{nom}$
4 kW lost (.25%) to dump (NLC 1 TeV)
IP Backgrounds

- Disrupted primary beam
- Beamstrahlung (BSL) photons
- e^+e^- pairs from BSL γs
- Hadrons from BSL or $\gamma\gamma$
- Neutrons from e^+e^- pairs
- Radiative Bhabhas

These scale with Luminosity (Good)
Shield from detectors

Machine Backgrounds

- Neutron back-shine from dump
- Synchrotron radiation
- Muon production
- Collimator scraping

These don’t scale with Lumi (Bad)
Avoid near IP
e^+e^- Pairs

Pairs ‘curl up’ in large solenoid field

P_T from opposing bunch

must absorb without scattering into detector...

NLC Simulation

Eric Torrence 8/29 April 2003
~ 1×10^9 per second (1 Watt)

Pairs also make good monitor of luminosity and collision parameters...
~ 0.5 $\gamma\gamma$ hadron events/NLC train
average 6 GeV in barrel + endcap, 10 tracks
~ 30 GeV in forward mask...

Neutrons

- Expect 0.5×10^9 n/cm2/yr at VXD (NLC SD)
- Dominated by beam-beam pairs
- Small backshine from dump

Tolerate 3×10^9 n/cm2/yr for pixel detector
- m_Z, Γ_Z (LEP I) Energy Lumi
- m_W (LEP II) Energy
- $\sin^2\theta_w$ (SLC) Polarization

Dependent upon Beam Instrumentation
Beam Energy

- Absolute energy scale
- Beam energy width

Polarization

- Electron polarization scale
- Positron polarization (if available)

Luminosity

- $\frac{dL}{dE}$ (luminosity spectrum)
- $\int Ldt$ (total integrated luminosity)

⇒ Ensure instrumentation for physics needs!

Combination of beam-based and physics-based measurements!
Production Threshold

Kinematic Fits

Common Scale Uncertainty

$$\frac{\delta M_W}{M_W} \approx \frac{\delta E_{Beam}}{E_{Beam}}$$
Energy Needs

• Target 200 ppm from $2m_t < \sqrt{s} < 1\text{TeV}$
 $$\Delta m_t, \Delta m_H \sim 50\text{MeV}$$

• Recognize desire for < 50 ppm at $2m_W$

⇒ Improved precision always welcome...

Energy Proposal

• BPM-style at upstream 1mRad bend
 RT monitor, possible absolute scale

• WISRD-style at post-IP chicane
 RT monitor, possible absolute scale

 Energy width?

• Forward tracking 200-500 mRad

 Lumi-weighted absolute scale ($\mu^+\mu^-\gamma$)
LEP II Spectrometer

- 4.8 mRad Bend ⇒ 1 μm BPM resolution
- Stability maintained for less than 8 hours
- ~200 ppm achieved (relative)

RF Spectrometer

- 200 μRad Bend ⇒ < 100 nm BPM resolution
- Move the BPMs to the beam
- In situ alignment

⇒ Upstream of IP only!
Operated for 8 years ⇒ ~250 ppm achieved

NLC Questions

- Improved detector?
- Downstream operation?
- Energy distribution?
Radiative Returns at LEP

Statistics

- **Channel** ΔE_{beam}
 - $q\bar{q}\gamma \sim 18$ MeV
 - $\mu\mu\gamma \sim 40$ MeV
 - $ee\gamma \sim 70$ MeV

- **LEP Potential**
 - **Statistics Only**
 - 2.7 fb$^{-1}$

Systematics

- Theoretical Description
- Hadronization Uncertainties
- Detector Understanding

Need absolute θ measurement!

Opal Estimates

- $q\bar{q}\gamma \Delta E_{\text{beam}} \sim 70$ MeV
- $\mu\mu\gamma \Delta E_{\text{beam}} \sim 20$ MeV
- $ee\gamma \Delta E_{\text{beam}} \sim 80$ MeV

\[
\frac{s'}{s} = \frac{\sin\theta_1 + \sin\theta_2 - |\sin(\theta_1 + \theta_2)|}{\sin\theta_1 + \sin\theta_2 + |\sin(\theta_1 + \theta_2)|}
\]
Symmetric production: $s' = m_Z^2$, $\Theta_1 = \Theta_2$

<table>
<thead>
<tr>
<th>Collision Energy</th>
<th>$\cos \Theta$</th>
<th>Θ (mRad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 , m_W$</td>
<td>0.522</td>
<td>1000</td>
</tr>
<tr>
<td>$2 , m_t$</td>
<td>0.875</td>
<td>500</td>
</tr>
<tr>
<td>500 GeV</td>
<td>0.937</td>
<td>360</td>
</tr>
<tr>
<td>1 TeV</td>
<td>0.984</td>
<td>180</td>
</tr>
</tbody>
</table>

Need precision and accuracy at small Θ

$\delta \Theta \approx 0.1\%$ per event (Γ_Z limit)

100ppm accuracy (20 µm @ 2 meters)
Also WW background suppression, SUSY, new physics, etc.

<table>
<thead>
<tr>
<th>Process</th>
<th>Events per 80 fb^{-1}</th>
<th>A_{LR}</th>
<th>dA/A (stat) in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>560 k</td>
<td>99%</td>
<td>0.07</td>
</tr>
<tr>
<td>qq</td>
<td>250 k</td>
<td>45%</td>
<td>0.5</td>
</tr>
<tr>
<td>ll</td>
<td>120 k</td>
<td>10%</td>
<td>3.2</td>
</tr>
</tbody>
</table>

⇒ Also WW background suppression, SUSY, new physics, etc.
Slepton Production

\[e^- \rightarrow Z/\gamma \rightarrow \tilde{e} \]
\[e^+ \rightarrow \tilde{e}^* \]

s-channel: \(\tilde{e}_L \tilde{e}_L^* \) or \(\tilde{e}_R \tilde{e}_R^* \) only

\[\tilde{e}_L \tilde{e}_R^* \) and \(\tilde{e}_R \tilde{e}_L^* \) also

\[\sqrt{s} = 500 \text{ GeV} \]

\[P_{e^-} = -80\% \]

\[P_{e^-} = +80\% \]

[G. Moortgat-Pick, H. Steiner, 2000]

⇒ Unique manipulation of helicity states
Multiple Detectors

- Çerenkov counter - scattered e^- asymmetry
- Photon counter - integral γE asymmetry
- Quartz fiber calorimeter - transverse γ asym.

Unique systematics help reduce errors

$\delta P / P = 0.5\%$ achieved at SLD
Electron polarization only

- absolute scale limiting factor
- IP depolarization significant

Lum Weighted \neq Polarimeter

0.25% per beam possible (not proven)

Positron polarization also

$$ P_{eff} = (P^+ + P^-)/(1 + P^+P^-) $$

\Rightarrow 0.1% precision achievable

Blondel scheme gives lumi-weighted P^+, P^-

- Lose some luminosity (or don’t gain as much)
- Still need $\Delta = |P_L| - |P_R|$, relative Lumi
- Precision depends upon P^+ reversal freq.
Direct Polarization

\[\sigma = 7 \text{ pb at } \sqrt{s} = 500 \text{ GeV} \]

\[\sqrt{s} = 800 \text{ GeV} \]

\[\kappa_\gamma = 1.007 \]

\[\kappa_Z = 1.01 \]

\[\text{SM} \]

\[\delta P / P < 0.15\% \text{ for } 500 \text{ fb}^{-1} \text{ at } 500 \text{ GeV (9/1 L ratio)} \]

⇒ Similar with e\(^{-}\) pol only

[K. Mönerg, Snowmass 2001]
Highly dynamic distribution...

Linac energy spread

\[\frac{dn}{dE} \]
Flat tail + Gaussian core $R = \frac{A_{\text{tail}}}{A_{\text{core}}}$

$\frac{d\Gamma_t}{dR} = 40 \text{ MeV} / 1\%$

$\frac{d\Gamma_t}{dR} = 100 \text{ MeV} / 1\%$

Comparable to other systematics
The Uncertainty of it all

Key Reactions

- Threshold scans (top mass)
- Mass reconstruction (Higgs mass)

⇒ Plus many, many more...

Highly dynamic distribution

- Variance: increased statistical errors
- Uncertainty: increased systematic errors

Both need consideration

Rough physics needs

- Scans mostly need shape (tails to 1%)
- Mass analyses need mean $\sqrt{s'}$ (200 ppm)

⇒ New instrumentation problem for e$^+e^-$
Bhabha rates

- Forward (180-300 mRad) ~ 200 R
- Intermediate (300-800 mRad) ~ 100 R
- Barrel (> 800 mRad) ~ 8 R

Need rates from forward events, but not too far forward...

Forward Tracker (Tesla design)

Silicon planes 100 - 400 mRad
Acolinearity Limitations

- Bhabha analysis measures boost not \sqrt{s}
- Other inputs (e.g. energy width, asymmetry)
- Detector alignment systematics

⇒ Area of active study...

Beamstrahlung Correlations

- Dispersion effects
- Early-late correlations
- Banana tail effects

⇒ Can’t trust simulation alone...

Need data-tuned models integrated into generators
The Linear Collider Interaction Region must be carefully planned between accelerator, detector, and analysis-minded people.

New challenges exist for the LC environment

- Nanometer-sized beams, IP stability
- Large beam disruption
- Large e^+e^- pair background
- Uncertain luminosity spectrum

Old challenges for e^+e^- also exist

- Beam energy/width
- Beam polarization
- Absolute luminosity scale

Lots of interesting work going on NOW!

Plenty of work still to be done...